您的位置: turnitin查重官网> 工程 >> 工程质量 >GPS系统原理与其在工程测量中应用

GPS系统原理与其在工程测量中应用

收藏本文 2024-01-17 点赞:23555 浏览:106628 作者:网友投稿原创标记本站原创

摘要:GPS全球定位系统作为新形式测量系统,已广泛用于大地测量、工程测量、航空摄影测量以及地形测量等各个方面。随着全球定位系统(GPS)技术的快速发展,RTK测量技术也日益成熟,RTK测量技术逐步在测绘中得到应用。通过RTK技术能够在野外实时得到厘米级定位精度的测量方法,本文首先分析了GPS RTK技术在工程测量中的应用,其次,就GPS RTK技术在工程测量中处理数据方法和GPS RTK技术在工程测量中应用的优点进行了探讨,具有一定的参考价值。
关键词:GPS RTK技术;工程测量;应用;
Abstract: Through the RTK technology in the field can be obtained in real time cm level of positioning accuracy measurement method, this paper firstly analyzes the GPS RTK technology application in engineering survey, secondly, on the GPS RTK technology in engineering measurement data processing method and the GPS RTK technology in engineering measurement . The advantages are discussed, which has a certain reference value.
Key words: GPS RTK technology; engineering measurement; application
2095-2104(2012)07-0020-02
引言 全球定位系统(Global Positioning System)是由美国国防部联合美国海、陆、空三军为满足其军事导航定位而建立的无线电导航定位系统。其系统从1973年开始研究,到1993年完成全部工作卫星组网工作。该系统由24颗卫星组成,卫星分布在相隔60°的6个轨道面上,轨道倾角55°卫星高度20200km,卫星运行周期11h58m,这样在地球上任何地点、任何时间都可以接收至少4颗卫星运行定位。由于GPS具有实时提供三维坐标的能力,因此在民用、商业、科学研究上也得到了广泛应用。它不仅具有全球性、全天候、连续的精密三维导航与定位能力,而且具有良好的抗干扰性和保密性。从静态定位到快速定位、动态定位,GPS技术已广泛应用于测绘工作中。
GPS就是全球定位系统,它是随着现代科学技术的迅速发展而建立起来的新一代紧密卫星导航定位系统,GPS卫星定位测量是研究利用GPS系统解决大地测量问题的一项空间技术,随着全球定位系统(GPS)技术的快速发展,RTK测量技术也日益成熟,RTK测量技术逐步在测绘中得到应用。通过RTK技术能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。 RTK(Real Time kinematic)是GPS发展的最新成果,它弥补GPS原有的不足之处,它不仅具有GPS原有的全天候、高精度、无须光学通视的特点,而且还可以为测量提供实时的定位结果,可以说RTK的产生是GPS应用的拓展,是测量方法的又一次突破,是测量史上的又一次变革。由于RTK能够实时提供高精度的定位结果,所以有人又称它为“GPS全站仪”。
1、GPS测量的技术特点 第一,测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰;第二,定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7;第三,观测时间短。采用GPS布设控制网时,每个测站上的观测时间一般在30~40min左右,采用快速静态定位方法,观测时间更短。例如使用接收机的RTK法可在5s以内求得待测点三维坐标。GPS测量在精确测定观测站平面位置的同时,可

源于:论文网站www.udooo.com

以精确测定观测站的大地高程;第四,操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高,打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得待测点三维坐标。而其它观测工作(如卫星的捕获,跟踪观测等)均由仪器自动完成。

2、RTK技术作为高效定位技术的论述

RTK(Real Time Kinematic)技术是以载波相位测量与数据传输技术相结合,以载波相位测量为依据的实时差分GPS测量技术,是GPS测量技术发展里程中的一个标志,是一种高效的定位技术。它是利用2台以上GPS接收机同时接收卫星信号,其中一台安置在已知坐标点上作为基准站,另一台用来测定未知点的坐标——移动站,基准站根据该点的准确坐标求出其到卫星的距离改正数并将这一改正数发给移动站,移动站根据这一改正数来改正其定位结果,从而大大提高定位精度。它能够实时的地提供测站点指定坐标系的三维定位结果,并达到厘米级精度。RTK技术根据差分方法的不同分为修正法和差分法。修正法是将基准站的载波相位修正值发送给移动站,改正移动站接收到的载波相位,再解求坐标;差分法是将基准站采集到的载波相位发送给移动站,进行求差解算坐标。RTK的关键技术主要是初始整周期模糊度的快速解算数据链的优质完成——实现高波特率数据传输的高可靠性和强抗干扰性。
3、GPS RTK技术在工程测量中的应用 RTK(Real - time kinematic)实时动态差分法,是一种新的常用的GPS测量方法。以前的静态、快速静态、动态测量都需要事后进行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。 (1)控制测量。为满足城市建成区和规划区测绘的需要,城市控制网具有控制面积大、精度高、使用频繁等特点,城市Ⅰ、Ⅱ、Ⅲ级导线大多位于地面,随着城市建设的飞速发展,这些点常被破坏,影响了工程测量的进度,如何快速精确地提供控制点,直接影响工作的效率。常规控制测量如导线测量,要求点间通视,费工费时,且精度不均匀。GPS 静态测量,点间不需通视且精度高,但数据采集时间长,还需事后进行数据处理,不能实时知道定位结果,如内业发现精度不符合要求则必须返工。应用RTK技术将无论是在作业精度,还是作业效率上都具有明显的优势。 (2)线路中线定线。RTK测量技术用于市政道路中线或电力线中线放样,放样工作一人也可完成。将线路参数如线路起终点坐标、曲线转角、半径等输入RTK的外业控制器,即可放样。放样方法灵活,既能按桩号也可按坐标放样,并可以随时互换。放样时屏幕上有箭头指示偏移量和偏移方位,便于前后左右移动,直到误差小于设定值为止。 (3)建筑物规划放线。建筑物规划放线,放线点既要满足城市规划条件的要求,又要满足建筑物本身的几何关系,放样精度要求较高。使用RTK进行建筑物放样时,需要注意检查建筑物本身的几何关系,对于短边,其相对关系较难满足。在放样的同时,需要注意的是测量点位的收敛精度,如果点位收敛精度不高的情况下,强制测量则有可能带来较大的点位误差。在点位收敛精度高的情况下,用RTK进行规划放线一般能满足要求。 (4)用地测量。在建设用地勘测定界测量中,RTK技术可实时地测定界址点坐标,确定土地使用界限范围,计算用地面积,在土地分类及权属调查时,应用RTK技术可实时测量权属界限、土地分类修测,提高了测量速度和精度。 4、GPS RTK技术在工程测量中处理数据方法 实时动态测量RTK是基于载波相位观测值的实时动态定位技术。在RTK作业模式下,基准站通过数据锭—调制解调器,将其观测值及站点的坐标信息用电磁信号一起发送给流动站。流动站不仅接收来自基准站的数据.同时本身也要采集GPS卫星信号,并取得观测数据,在系统内组成差分观测值进行实时处理,瞬时地给出精度为厘米级(相对于参考站)的流动站。在RTK作业模式下,基准站通过数据链将其观测值(伪距和载波相位观测值)和测站坐标信息(如基准站坐标和天线高度)—再传送给流动站,流动站在完成初始化后,一方面通过数据链接收来自基准站的数据,另外,自身也采集rTP3观测数据,并在系统内组成差分观测值进行实时处理,再经过坐标转换、高程拟合和投影改正,即可给出实用的厘米级定位结果,即点位坐标。

5、结束语

总之;随着全球定位系统(GPS)技术的快速发展,RTK测量技术也日益成熟,RTK测量技术逐步在测绘中得到应用。通过RTK技术能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号